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Numerical Kinematic Analysis of the Standard Macpherson 
Motor-Vehicle Suspension System 
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In this paper, an efficient numerical algorithm for the kinematic analysis of the standard 

MacPherson suspension system is presented. The kinematic analysis of the suspension 

mechanism is carried out in terms of the rectangular Cartesian coordinates of some defined 

points in the links and at the kinematic joints. Geometric constraints that fix the distances 

between the points belonging to the same rigid link are introduced. The nonlinear constraint 

equations are solved by iterative numerical methods. The corresponding linear equations of the 

velocity and acceleration are solved to yield the velocities and accelerations of the unknown 

points. The velocities and accelerations of other points of interest as well as the angular velocity 

and acceleration of any link in the mechanism can be calculated. 

Key Words :  Kinematic Analysis, Mechanisms and Machines, Suspension Systems, Position 

Problem, Velocity and Acceleration Problems 

I. Introduction 

The different analytical methods for kinematic 

analysis of mechanisms can be classified accord- 

ing to the type of coordinates chosen to for- 

mulate their constraints and determine their con- 

figuration. Some formulations use a large set of 

absolute coordinates (Wehage and Haug, 1982; 

Nikravesh, 1988). The position and orientation of 

the rigid links in the mechanism are described 

with respect to the global reference coordinate 

system. The algebraic equations of constraints are 

introduced to represent the kinematic joints that 

connect the rigid bodies. Although in this type of 

formulation the constraint equations are easy to 

construct, it has the disadvantage of the large 

number of defined dependent coordinates. 

Other formulations use sets of relative coordi- 
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nates (Denavit and Hartenberg, 1955: Paul and 

Krajcinovic, 1970). The position of each link is 

defined with respect to the previous link by means 

of relative joint coordinates that depend on the 

type of the joint connecting the two links. This 

type of formulation yields a minimal set of alge- 

braic equations. The constraint equations are 

derived based on loop closure equations, and the 

resulting constraint equations are highly non- 

linear and contain complex sinusoidal functions. 

Another formulation which is based on point 

coordinates is discussed in (Garcia de Jalon et 

al., 1981, 1982: Vilallonga et al., 1984; Akhras 

and Angeles, 1990; Attia, 1993, 1999; Attia and 

Amasha, 2001). The configuration of the system 

is described in terms of the rectangular Cartesian 

coordinates of some defined points in the links 

and at the joints. The system constraint equations 

are then written to fix the relative positions of the 

points in each rigid link and also the relative 

positions between the different links determined 

by the type of joints connecting them. 

In this paper the kinematic analysis of the 

standard MacPherson suspension system is carri- 

ed out in terms of point coordinates. The posi- 
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tion, velocity, and acceleration analyses are carri- 

ed out to determine the positions, velocities, and 

accelerations of  the unknown points and links in 

the mechanism. The velocities and accelerations 

of  other  points of  interest can also be calculat-  

ed if their positions are locally specified. The 

angular  velocity and acceleration of  any link in 

the mechanism are evaluated in terms of  the 

Cartesian coordinates,  velocities, and accelera- 

tions of  the assigned points. The  presented for- 

mulat ion in terms of  the Cartesian coordinates  of  

specified link points is simple and involves only 

elementary mathematics.  

2.  M o d e l l i n g  o f  t h e  S t a n d a r d  

M a c p h e r s o n  S u s p e n s i o n  

Figure 1 presents a schematic d iagram of  a 

quarter  of  a car with the standard Macpherson 

suspension system that has different kinematic 

joints.  The mechanical  system consists of  the main 

chassis, a standard MacPherson suspension mec- 

hanism, a steering rod and a wheel. The standard 

MacPherson suspension consists of  an A-a rm,  a 

knuckle and a spring rod. The system constitutes 

two closed loops. The first closed loop is com- 

posed of  the chassis, the A-a rm,  the knuckle and 

the steering rod. The second closed loop is com- 

posed of  the chassis, the A-a rm,  the knuckle and 

the spring rod. The chassis is constrained to move 

vertically upward or  downward .  The steering rod 

connects the chassis and the knuckle via two 

spherical joints  and it represents a kinematic  

constraint  imposed on the system. The A - a r m  and 

the knuckle each has 6 degrees of  freedom and the 

spring rod has 5 degrees of  freedom (no rotat ion 

about  its axis) in spatial motion.  One revolute 

jo in t  connects the chassis and the A - a r m  and 

imposes 5 constraints. Two spherical joints  each 

imposes 3 constraints: one connects the A - a r m  to 

the knuckle and the other connects the chassis and 

the spring rod. One translat ional  jo in t  connects 

the spring rod to the knuckle and imposes 5 

constraints. Thus the system has 2 degrees of  

freedom. 

The configurat ion of  the mechanism can be 

specified by defining a set o f  points on the links 
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Schematic Diagram of the MacPherson sus- 

pension with the assigned points 

and joints.  Figure 2 presents the standard Mac- 

Pherson mechanism with its assigned points. Each 

binary link is replaced by two points located at 

both ends while each ternary link is replaced by 

three points. The adjacent links share common 

points. Two points are located at the axis of  

the revolute joint  connect ing the chassis and the 

A - a r m  to define its direct ion (points 1 and 2). 

Points 3 and 4 are located at the centers of  the 

spherical joints  connecting the chassis to the 

steering and the spring rods respectively. Points 5 

and 8 are located at the centers of  the spherical 

joints  connect ing the knuckle to the A - a r m  and 

the steering rod respectively. The locations of  

these points (points 1, .-., 5 and 8) are chosen to 
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automatically eliminate the constraint equations 

associated with the revolute and spherical joints. 

Points 6, 7 and 9 together with point 4 are located 

along the axis of the translational joint to define 

its orientation and to help in constructing the 

vectors needed to write the constraint equations 

associated with this kinematic joint. The initial 

positions, velocities and accelerations of points 

1 . . . . ,  4 are known from the input data of the 

driver. Points 5, '--, 9 are the unknown points and 

their Cartesian coordinates define the motion 

variables. Therefore, 15 constraint equations are 

needed to solve for the 15 unknown Cartesian 

coordinates. Having determined the configuration 

of the mechanism in terms of the unknown points, 

the location of any other point of interest can also 

be calculated. 

2.1 Position analysis 
The constraints are either geometric or kine- 

matic constraints. The geometric constraints are 

distance constraints between pairs of points be- 

longing to the same link. For the steering rod of 

fixed length, a distance constraint that fixes the 

distance between points 3 and 8 is written. For a 

ternary link, three distance constraints are written 

to fix the distance between each pair of the three 

points replacing the link. The geometric con- 

straint equations are expressed in the Cartesian 

coordinates of the points as follows, 

(X5--Xl) 2+ (Ys--Yl) 2+ 

(Xs--X2) 2+ (Ys-- Yz) 2+ 

(x~- x3) 2 + (ys-y3)2+ 

(Xg--X4) z+ (Yg-- Y4) z+ 

(X6-- X~) 2+ (Y6-- Ys) 2+ 

(Xe-- Xs) 2+ (YT--Y5) 2+ 

(Xs--Xs) z+ (Ys--Ys) z+ 

(x7--xs) 2+ (YT-- Y6) z+ 

(zs-z~)2-d~,=O (1) 

(z~-z2)~- d~2 =0 (2) 

(~-za) Z-d~a =0 (3) 

(za--24) 2-- d~4 =0  (4) 

(z6-zs) 2 -  d~s =0  (5) 

(zT-zs)2-d~5=O (6) 

(z~-z~)2- d~  = o  (7) 

(zT-z~)2-d~ =0  (8) 

(xs--X6)Z+ (y8--y6)2+ (zs-z6)Z-daZ,6 = 0  (9) 

(x~-xT)2+ (ys-yT)2+ (z~-zT)2-d~7 =o (lO) 

where di.j is the distance between points i and j 

belonging to the same rigid link and xi, Yi, and z,. 

are the Cartesian coordinates of point i, respec- 

tively. Kinematic constraints result from the con- 

ditions imposed by the kinematic joints on the 

relative motion between the bodies they comprise. 

Points located at the centre of a spherical joint 

or the axis of a revolute joint automatically 

eliminates all the kinematic constraints due to 

these joints. However, because of the presence of 

the translational joint, kinematic constraints are 

added in terms of the coordinates of the points 

located along the axis of the translational joint. 

Two points on each body are located along the 

axis of the joint and the constraint formulation 

should ensure that the four points remain coil- 

near. The independent kinematic constraints res- 

ulting from the cross product operation take the 

form, 

(Y7--Y6) (Z9--24)-  (ZT--Z~)(Yg--Y4)=0 (11) 

(XT--X~) (Z9--24) -- (ZT--Z6) (X9--X4) = 0  (112) 

(Yg--YT) (29--24) -- (Z,9--,~7) (Yg--Y4) = 0  (13) 

(X9--X7) (2-9--24) --  (Z9--2-6) (Xg--X4) = 0  (14) 

Equations (11) and (12) ensure that the two 

bodies remain parallel to each other. However, 

Eqs. (13) and (14) are sufficient to prevent the 

separation between the two bodies. Moreover, a 

driving constraint is added to the above cons- 

traints as a function of the input driving variable, 

namely, the angular coordinate 0 (see Fig. 2) in 

the form, 

(zs--zx) -- d5a COS (0) = 0  (15) 

where 0 is the inclination angle of the line 

connecting points 1 and 5 with the vertical up- 

wards. 

Eq. (1) expresses the required 15 independent 

constraint equations in terms of the Cartesian 

coordinates of the assigned points. The vector of 

coordinates composes known and unknown sets 

of coordinates. The known coordinates are the 

coordinates of points 1, 2, 3 and 4 fixed on the 

chassis, and the driving coordinate 0. They 

should be given at any instant. The unknown 

coordinates are the 15 Cartesian coordinates of 

points 5, 6, 7, 8 and 9 located on the knuckle 
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and the spring rod. Given the set of known 

coordinates at each instant of time, the 15 non- 

linear Eq. (1) can be solved by any iterative 

numerical method (Molian, 1968) to determine 

the 15 unknown Cartesian coordinates. 

It should be noted that in this formulation, 

the kinematic constraints due to some common 

types of kinematic joints (e.g. revolute or sphe- 

rical joints) can be automatically eliminated by 

properly locating the assigned points. The re- 

maining kinematic constraints along with the 

geometric constraints are, in general, either linear 

or quadratic in the Cartesian coordinates of the 

particles. Therefore, the coefficients of their Jaco- 

bian matrix are constants or linear in the rectan- 

gular Cartesian coordinates. Where as in the for- 

mulation based on the relative coordinates, the 

constraint equations are derived based on loop 

closure equations which have the disadvantage 

that they do not directly determine the positions 

of the links and points of interest which makes the 

establishment of the dynamic problem more diffi- 

cult. Also, the resulting constraint equations are 

highly nonlinear and contain complex circular 

functions. The absence of these circular functions 

in the point coordinate formulation leads to faster 

convergence and better accuracy. Furthermore, 

preprocessing the mechanism by the topological 

graph theory is not necessary as it would be the 

case with loop constraints. 

Also, in comparison with the absolute coordi- 

nates formulation, the manual work of the local 

axes attachment and local coordinates evaluation 

as well as the use of the rotational variables and 

the rotation matrices in the absolute coordinate 

formulation are not required in the point coordi- 

nate formulation. This leads to tully computerized 

analysis and accounts for a reduction in the com- 

putational time and memory storage. In addition 

to that, the constraint equations take much sim- 

pler forms as compared with the absolute coordi- 

nates. 

The main kinematical properties of the suspen- 

sion are described by the coordinates of the wheel 

centre point and the kingpin angle a and camber 

angle ~ (Adler, 0000). The wheel centre point 

(point 10, see Fig. 2) is defined as the point at 

Fig. 3 Kingpin and camber angles 

which the wheel spin axis intersects the wheel 

plane. Points 7 and 10 define the wheel spin axis. 

The coordinates of the wheel centre point can be 

determined by specifying its position relative to 

three other points 5, 6, and 7 on the knuckle. 

Then, three distance constraints can be solved 

iteratively to get its global coordinates. Kingpin 

angle determines the steering aligning torque in 

conjunction with steering offset and wheel caster. 

The kingpin angle a is defined as the inclina- 

tion angle of the steering axis AD relative to 

the vertical longitudinal plane, measured in the 

transverse plane of the vehicle (Adler, 0000) and 

therefore from Fig. 3 ; 

~=tan-lE(yT-y~)/(zT-z~)] (16) 

A positive angle a signifies a displacement of 

point 5 in the negative y direction. The camber 

angle fl is the inclination of the wheel plane 

relative to the longitudinal vehicle plane, measur- 

ed in the transverse plane of the vehicle and 

therefore ; 

f l= tan -~[ - - ( zT - -Z~o) / ( yT - - y to ) ]  (17) 

Positive camber means that the wheels are tilted 

out at the top than at the bottom. 

2.2 Velocity and acceleration analyses 
The velocity equations are derived by dif- 

ferentiating Eq. (1) with respect to time. Then : 

[Cq]q=O (18) 

where the constraint Jacobian matrix [Cq] con- 

tains partial derivatives of the constraint equa- 

tions with respect to the coordinates of the points. 
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Since the velocity equat ions expressed in Eq. (18) 

are linear, the vector of velocities d l=  [q~, ~/2, " ' ' ,  

q~7, 0] r can be part i t ioned as c l=  [ti r, w r ]  r, and 

the velocity Eq. (18) can be rearranged in a 

matrix form as fol lows;  

[ C u ] t i =  [Cw]@ (19) 

where t i =  [25, y~, 25, "-', 2~] r and ,&-= [2~, 3;'~, 2~, 

• ",  24, 0] r are the unk n o wn  and known vectors of 

velocities, respectively. The matrices [Cu] and 

[Cw] are two sub-matr ices  of the constraint  

Jacobian matrix [Cq] and conta in  the columns 

associated with t~ and ,8 respectively, i.e., 

[ G ]  = 

2xsj 2ys.12zs,l 0 0 0 

2Xs~ 2y~.2 2~2 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

2Xs.r 2ys,, 2zs,: 0 0 0 

2xs.s2ys, 2~.~ 0 0 0 

O 0 0 2x6.72yc 2Z~r 

0 0 0 2xu2y~,~2z~a 

0 0 0 0 0 0 

0 0 0 0 ~s Y~.~ 

0 0 0 ~,~ 0 .r~a 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

and 

[ c~ ]  = 
2xsa 2y~.~ 0 0 0 

0 0 2xs,2 2ys,2 2zs,2 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 2xs.~2ys~2z~ 0 0 0 

0 0 0 0 0 0 2xga2.yg.42&. 

0 0 0 0 0 0 0 0 0 

2XT.s2yT.s2Z;.5 0 0 0 0 0 0 

0 0 0 2Xs23;8,s2~ 0 0 0 

2,rT, 2?,s2zT,s 0 0 0 0 0 0 

0 0 0 2xu2yss2as 0 0 0 

2XT.s 23~ 2Z:,, 2.r.8.r 2ys.72~, 0 0 0 

0 Z~,4 A.~ 0 0 0 0 ~,z .~,s 

Z~,4 0 X4S 0 0 0 Z6; 0 ,h,6 

0 gl.9 Yg.a 0 0 0 0 Z7,4 Y4.7 

Z~,9 0 x.~,4 0 0 0 ZT,~ 0 x4,; 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

2xs,a 23'~ 2&.a 0 0 0 

0 0 0 2.v9,4 2y~,~ 2&4 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 ~,7 Y7,6 

0 0 0 zs,r 0 )'r,6 

0 0 0 0 zv,~ Yg.r 

0 0 0 zra 0 .',:9.: 

0 0 0 0 0 -&sin(0) 

(20) 

(21) 

where x i . ~ = x i - - x j .  Since the constraint  equat ions 

are independent,  then sufficient rank is already 

assured for the matrix [Cu].  therefore, [Cu] re- 

presents 15× 15 matrix and Eq. (19) represents a 

linear system that may be solved for the unknown  

velocities ti, once the known velocity vector @ is 

given. 

Similarly, the acceleration equat ion is derived 

by differentiating the velocity Eq. (18) with re- 

spect to time as follows, 

[ Cq] q + [ Cq] Cl = 0  (22) 

The vector of accelerations ~ can also be parti- 

tioned to [ii r, @ r ] r  where ti and @ are the 

vectors of u n k n o w n  and known accelerations, 

respectively. Then,  the acceleration Eq. (22) is 

expressed as, 

[ C u ] U =  [ C w ] @ -  ECq]q (23) 

where the two sub-matrices [ C d  and [Cwl are 
defined by Eqs. (20) and (21) respectively and 
the square velocity term [Cq ]q  is expressed as 
follows. 

- " 2  " 2  -9 - 2xsa + 2Ysa + - ~ , 1  
-z 2.2 2 .z 2x5a + Y5,2-'1- Z5,2 

2.%2,3 + 29G + 2&a 
,9 "2 '2 2x~,4 + 2yga + 2zga 

22~,s + 2_92,5 + 22~,5 

22~, + 22~.6 + 222, / v 4) 
~ Cq] ~1 = .2 2.2 2 '  2 x 8 , +  28,6-'}- ~88.6 ' -  

2282,7 + 2 9~,7+ 2~8,7 

_97,629,4-- 27,6_%,4 

.~9,729,4 - -  29,7Y9,4 

Y9,729,4 - -  29,7Y9,4 

&,, cos (8) O~ 

All the elements in Eq. (24) are known from the 

velocity analysis. If [C~] is a nons ingular  matrix, 

then Eq. (28) can be solved for the u n k n o w n  

accelerations U, once @ is given. Despite the cons- 

traint equat ions being nonl inear ,  the velocity and 

acceleration equat ions are linear in terms of Cl 

and ti respectively. Therefore, regardless of the 

order of nonl inear i ty  of Eq. ( I ) ,  the velocity and 

acceleration equat ions can be parti t ioned. 

The velocities and accelerations of the un- 
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known points can be determined by solving the 

linear Eqs. (19) and (23) respectively using any 

numerical  method. The velocities and accelera- 

tions of any other points of interest can be cal- 

culated. Also the angular  velocity and accelerati- 

on of any link in the mechanism can be evaluated 

from the Cartesian coordinates,  velocities, and 

accelerations of any three defined points on the 

link. The vectors of the angular  velocity and 

acceleration of the ternary link can be determined 

as follows, 

co= vT,6xvs,6, a fiT,6xfi~,6 (25) 
vr,6" r8,6 ~,7,6" rtr,6 

where ~ j , i = a ~ , i - - w x ( w x r j . ~ )  and i, j ,  and k are 

the indices of three points located on the rigid 

link. Vectors rj, i , v~,i, and aj.~ are the relative 

position, velocity, and acceleration vectors be- 

tween points j and i, respectively. 

3. R e s u l t s  o f  the  S i m u l a t i o n  

The chassis is assumed to be stat ionary and 

therefore the values of the velocities and acc- 

elerations of all known points (points 1, "-', 4) 

fixed on it are identically zero. The Cartesian 

coordinates of the known points are listed in 

Table  1. The driving variable 0 is taken as func- 

tion of time in the form, O ( t ) = l + t + t  2. The 

nonl inear  equations of constraints (1) are solved 

by Newton-Raphson ' s  method of successive ap- 

proximation to determine the Cartesian coordi- 

nates of the unknown  points for different time 

steps. Also, the Cartesian coordinates of the 

wheel centre (point  10) are estimated. The veloc- 

ity and acceleration equat ions are solved using 

the L -U  factorization with pivoting method. Ta- 

ble 2 presents some results of the kinematic 

analysis lbr two seconds of s imulat ion as a result 

of  changing the driver angle with time. The posi- 

tions, velocities and accelerations of some points 

in the mechanism are indicated. The angular  

velocity and angular  acceleration of the knuckle 

are also shown at various time levels. Figure 4 

presents the time variat ion of the z-coordinate  of 

the wheel centre. Figure 5 shows the variation of 

the kingpin angle a and the camber angle ~ with 

time. 

Table 1 Cartesian coordinates (m) of the known points 

(xl, Yl, z~) ( 1.495, 0.05, --0.08) (xa, Y3, z3) ( I. I I, --0.02, 0.06) 

(x2, Yz, zz) (1.175, 0.05, --0.08) (x4, y4, z4) (1.38, 0.28, 0.49) 

Table 2 Simulation Results 
Time (s), x(m),  x (m/s ) ,  2(re~s2), co(rad/s), a(rad/s  "~) 

Time 0 1 2 

(xs, Y8, z~) (1.29, 0.39, 0.2) (1.3, 0.27, --0.26) (I.295, 0.4, 0.1) 

(As, _98, 28) (0, 0.09, --0.26) (0.01, --0.48, --0.4) (--0.02, --0.13, 1) 

(28, .V8, 28) (0.04, 0.0, --0.6) (--0.02, --0.49, 0.8) (0.026, --2.2, I) 

(xg, yg, 29) (1.5, 0.4, 0.13) (1.4, 0.3, 0.09) (1.48, 0.41, 0.13) 

(29, -99, 29) (--0.13, 0.1, --0.01) (--0.02, --0.3, --0.02) (0.26, 0.22, 0.08) 

(29, 3)9, 29) (0.04, --0.4, --0.06) (0.135, --0.257, 0.2) (1.2, --2.5, --0.4) 

(xlo, ylo, Zlo) (1.6, 0.39, 0.05) (1.58, 0.34, --0.469) (1.59, 0.5, --0.05) 

(Xao, -91o, 21o) (--0.03, 0.26, --0.3) (--0.007, --0.6, --0.5) (0.077, --0.4, 1) 

(xlo, 3:'1o, 21o) (--0.01, --0.2, --0.5) (0.14. --1.49, 0.82) (0.19. --4.0, --0.6) 

Wk,,ucme (0.11, 0.2, 0.47) (--0.68, 0.07, --0.16) (0.37, --0.3, --1.1) 

ahnuckte ( - -  1, --0.2, --0.12) ( --0.17, 0.3, --3.4) ( --5.3, --2.3, --2.6) 
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4. Conclusions  

In this paper, the numerical kinematic analysis 
of the standard MacPherson suspension system 

is presented. The kinematic analysis is carried 

out in terms of the rectangular Cartesian coordi- 

nates of some defined points in the links and at 

the kinematic joints. The suggested algorithm 

eliminates the need to write redundant constraints 

and allows solving a reduced system of equations. 

This reduced system of equations results in a 

better accuracy and a reduction in computing 

time and memory storage in comparison with the 

absolute coordinate formulation. The algorithm 

can be used to solve for the initial position as well 

as the finite displacement problems. The results of 

the analysis indicate the simplicity, generality, 

and efficiency of the proposed algorithm. 
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